IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-030-10501-3_12.html
   My bibliography  Save this book chapter

Single-Stage-to-Orbit Space-Plane Trajectory Performance Analysis

In: Modeling and Optimization in Space Engineering

Author

Listed:
  • Erwin Mooij

    (Delft University of Technology, Faculty of Aerospace Engineering)

Abstract

The development of fully reusable launch systems has been the topic of many studies since the 1960s. Over the years, several aspects of both so-called single- and two-stage-to-orbit space planes have provided many interesting research topics. Amongst others, the constrained trajectory optimisation has proven to be a challenging subject. In this chapter, an inverse-dynamics approach is combined with trajectory optimisation and analysis, by discretising a representative (vertical-plane) ascent trajectory into a number of flight segments, and by parametrising the guidance in terms of flight-path angle as a function of altitude. When the individual guidance parameters are varied, the effect on performance indices payload mass and integrated heat load can be analysed. This can subsequently lead to a refinement of the trajectory. To do so with limited effort, design-of-experiment techniques are used. It is shown that with this relatively simple simulation scheme, combined with variance analysis and response-surface methodology, the insight in the trajectory dynamics can be increased. Alternatively, this method can be used as refinement to an otherwise (local) optimum trajectory. It is stressed, though, that the application of design of experiments to the ascent-trajectory problem cannot replace numerical optimisation. Finally, the impact of using thrust-vector control as a means to (partially) trim the vehicle shows significant fuel savings and should therefore be included in the optimisation process.

Suggested Citation

  • Erwin Mooij, 2019. "Single-Stage-to-Orbit Space-Plane Trajectory Performance Analysis," Springer Optimization and Its Applications, in: Giorgio Fasano & János D. Pintér (ed.), Modeling and Optimization in Space Engineering, pages 307-341, Springer.
  • Handle: RePEc:spr:spochp:978-3-030-10501-3_12
    DOI: 10.1007/978-3-030-10501-3_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-030-10501-3_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.