Author
Abstract
This chapter addresses subgradient nonsmooth optimization methods. The generalized gradient descent method known later as the subgradient method is considered. It was used to solve many high-dimensional problems of production and transportation scheduling with decomposition schemes. Subgradient methods with space dilation, whose special cases are the ellipsoid method and r-algorithms, are analyzed. The application of nonsmooth optimization methods to various mathematical programming problems is discussed. The algorithmic scheme of the well-known descent method is considered. This scheme has made it possible to develop a wide range of local search algorithms, which were used in application packages elaborated at the Institute of Cybernetics. The modern method of local type, the probabilistic method of global equilibrium search, is analyzed. It was applied to solve various classes of problems of transcomputational complexity and appeared to be the most efficient discrete optimization technique. The approaches to accelerating the solution of discrete optimization problems are discussed. The stability of vector discrete optimization problems is analyzed. Different types of stability of integer optimization problems and regularization of unstable problems are considered. Some of the chapter deals with stochastic optimization that involves decision making under risk and uncertainty. Stochastic quasigradient methods and their modifications for stochastic programming problems are considered. The solution of stochastic global optimization, stochastic discrete optimization, stochastic minimax, and vector stochastic optimization problems is analyzed. The use of stochastic optimization methods in risk assessment and management is discussed. The chapter reviews the results of the mathematical theory of control of distributed parameter systems and stochastic and discrete systems and addresses the robust stability, determination of invariant sets of dynamic systems, and spacecraft control. The methods of the analysis of dynamic games, including those with groups of participants under various constraints, are considered as the development of motion control methods.
Suggested Citation
Ivan V. Sergienko, 2014.
"Optimization Methods for Solving Problems of Transcomputational Complexity,"
Springer Optimization and Its Applications, in: Topical Directions of Informatics, edition 127, chapter 0, pages 189-232,
Springer.
Handle:
RePEc:spr:spochp:978-1-4939-0476-1_6
DOI: 10.1007/978-1-4939-0476-1_6
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
search for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-1-4939-0476-1_6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.