IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-1-4614-5131-0_6.html
   My bibliography  Save this book chapter

Quantifying Retardation in Simulation Based Optimization

In: Optimization, Simulation, and Control

Author

Listed:
  • Andreas Griewank

    (Humboldt University Berlin)

  • Adel Hamdi

    (Institut National des Sciences Appliques de Rouen)

  • Emre Özkaya

    (RWTH Aachen University)

Abstract

In many applications one wishes to optimize designs on the basis of an established simulation tool. We consider the situation where “simulation” means solving a system of state equations by a fixed point iteration. “Optimization” may then be performed by appending an adjoint solver and an iteration step on the design variables. The main mathematical goal of this chapter is to quantify and estimate the retardation factor, i.e., the complexity of an optimization run compared to that of a single simulation, measured in terms of contraction rates. It is generally believed that the retardation factor should be bounded by a reasonably small number irrespective of discretization widths and other incidental quantities. We show that this is indeed the case for a simple elliptic control problem, when the state equations are solved by Jacobi or a multigrid V-cycle. Moreover, there is strong dependence on a regularization term. This is also shown to be true when the state equation is solved by Newton’s method and the projected Hessian is explicitly available

Suggested Citation

  • Andreas Griewank & Adel Hamdi & Emre Özkaya, 2013. "Quantifying Retardation in Simulation Based Optimization," Springer Optimization and Its Applications, in: Altannar Chinchuluun & Panos M. Pardalos & Rentsen Enkhbat & E. N. Pistikopoulos (ed.), Optimization, Simulation, and Control, edition 127, pages 79-96, Springer.
  • Handle: RePEc:spr:spochp:978-1-4614-5131-0_6
    DOI: 10.1007/978-1-4614-5131-0_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-1-4614-5131-0_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.