IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-1-4614-4469-5_2.html
   My bibliography  Save this book chapter

Practical Direct Collocation Methods for Computational Optimal Control

In: Modeling and Optimization in Space Engineering

Author

Listed:
  • Victor M. Becerra

    (University of Reading)

Abstract

The development of numerical methods for optimal control and, specifically, trajectory optimisation, has been correlated with advances in the fields of space exploration and digital computing. Space exploration presented scientists and engineers with challenging optimal control problems. Specialised numerical methods implemented in software that runs on digital computers provided the means for solving these problems. This chapter gives an introduction to direct collocation methods for computational optimal control. In a direct collocation method, the state is approximated using a set of basis functions, and the dynamics are collocated at a given set of points along the time interval of the problem, resulting in a sparse nonlinear programming problem. This chapter concentrates on local direct collocation methods, which are based on low-order basis functions employed to discretise the state variables over a time segment. This chapter includes sections that discuss important practical issues such as multi-phase problems, sparse nonlinear programming solvers, efficient differentiation, measures of accuracy of the discretisation, mesh refinement, and potential pitfalls. A space relevant example is given related to a four-phase vehicle launch problem.

Suggested Citation

  • Victor M. Becerra, 2012. "Practical Direct Collocation Methods for Computational Optimal Control," Springer Optimization and Its Applications, in: Giorgio Fasano & János D. Pintér (ed.), Modeling and Optimization in Space Engineering, edition 127, chapter 0, pages 33-60, Springer.
  • Handle: RePEc:spr:spochp:978-1-4614-4469-5_2
    DOI: 10.1007/978-1-4614-4469-5_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-1-4614-4469-5_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.