IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-1-4614-3773-4_6.html
   My bibliography  Save this book chapter

Genetic Programming for the Induction of Seasonal Forecasts: A Study on Weather Derivatives

In: Financial Decision Making Using Computational Intelligence

Author

Listed:
  • Alexandros Agapitos

    (University College Dublin)

  • Michael O’Neill

    (University College Dublin)

  • Anthony Brabazon

    (University College Dublin)

Abstract

The last 10 years has seen the introduction and rapid growth of a market in weather derivatives, financial instruments whose payoffs are determined by the outcome of an underlying weather metric. These instruments allow organisations to protect themselves against the commercial risks posed by weather fluctuations and also provide investment opportunities for financial traders. The size of the market for weather derivatives is substantial, with a survey suggesting that the market size exceeded $45.2 Billion in 2005/2006 with most contracts being written on temperature-based metrics. A key problem faced by buyers and sellers of weather derivatives is the determination of an appropriate pricing model (and resulting price) for the financial instrument. A critical input into the pricing model is an accurate forecast of the underlying weather metric. In this study we induce seasonal forecasting temperature models by means of a machine learning algorithm. Genetic Programming (GP) is applied to learn an accurate, localised, long-term forecast of a temperature profile as part of the broader process of determining appropriate pricing model for weather derivatives. Two different approaches for GP-based time series modelling are adopted. The first is based on a simple system identification approach whereby the temporal index of the time-series is used as the sole regressor of the evolved model. The second is based on iterated single-step prediction that resembles autoregressive and moving average models in statistical time-series modelling. The major issue of effective model generalisation is tackled though the use of an ensemble learning technique that allows a family of forecasting models to be evolved using different training sets, so that predictions are formed by averaging the diverse model outputs. Empirical results suggest that GP is able to successfully induce seasonal forecasting models and that search-based autoregressive models compose a more stable unit of evolution in terms of generalisation performance for the three datasets considered. In addition, the use of ensemble learning of 5-model predictors enhanced the generalisation ability of the system as opposed to single-model prediction systems. On a more general note, there is an increasing recognition of the utility of evolutionary methodologies for the modelling of meteorological, climatic and ecological phenomena, and this work also contributes to this literature.

Suggested Citation

  • Alexandros Agapitos & Michael O’Neill & Anthony Brabazon, 2012. "Genetic Programming for the Induction of Seasonal Forecasts: A Study on Weather Derivatives," Springer Optimization and Its Applications, in: Michael Doumpos & Constantin Zopounidis & Panos M. Pardalos (ed.), Financial Decision Making Using Computational Intelligence, edition 127, chapter 0, pages 159-188, Springer.
  • Handle: RePEc:spr:spochp:978-1-4614-3773-4_6
    DOI: 10.1007/978-1-4614-3773-4_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-1-4614-3773-4_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.