IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-1-4614-0857-4_9.html
   My bibliography  Save this book chapter

A Parallel Routing Algorithm for Traffic Optimization

In: Handbook of Optimization in Complex Networks

Author

Listed:
  • M. L. Wang

    (City University of Hong Kong)

  • K. H. Yeung

    (City University of Hong Kong)

  • F. Yan

    (City University of Hong Kong)

Abstract

This chapter applies the general complex network theory to study a parallel routing algorithm called Classified Traffic Routing (CTR) for traffic optimization. The parallel routing algorithm involves two routing tables when forwarding packets. For CTR, performance analysis is performed which focuses on loss, delay, and energy in a scale-free network. Its performance is also compared to those of single routing algorithms. For existing two main kinds of single routing algorithms - shortest path first and congestion avoidance first algorithms, we select one representative algorithm from each kind for comparison. The result shows that good loss or delay performance (but not both) can be obtained for each representative routing algorithm, namely Shortest Path First (SPF) algorithm and Optimal Routing (OR) algorithm. The chapter then discusses a study on energy performance of these two algorithms. The results show that the two algorithms have very different performance on average energy consumption and on distribution of energy consumption among all nodes. This chapter then argues that single routing algorithm could not meet the requirements of different types of traffic while could not balance the energy consumption. In order to provide good loss performance for loss-sensitive traffic and good delay performance for delay-sensitive traffic, and in consideration of energy consumption, forwarding packets with CTR is a good choice. Simulation results show that CTR can give a much more balanced performance on loss, delay, and energy than those of SPF and OR.

Suggested Citation

  • M. L. Wang & K. H. Yeung & F. Yan, 2012. "A Parallel Routing Algorithm for Traffic Optimization," Springer Optimization and Its Applications, in: My T. Thai & Panos M. Pardalos (ed.), Handbook of Optimization in Complex Networks, chapter 0, pages 241-261, Springer.
  • Handle: RePEc:spr:spochp:978-1-4614-0857-4_9
    DOI: 10.1007/978-1-4614-0857-4_9
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-1-4614-0857-4_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.