IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-1-4614-0857-4_14.html
   My bibliography  Save this book chapter

Discount Targeting in Online Social Networks Using Backpressure-Based Learning

In: Handbook of Optimization in Complex Networks

Author

Listed:
  • Srinivas Shakkottai

    (Texas A&M University)

  • Lei Ying

    (Iowa State University)

Abstract

Online social networks are increasingly being seen as a means of obtaining awareness of user preferences. Such awareness could be used to target goods and services at them. We consider a general user model, wherein users could buy different numbers of goods at a marked and at a discounted price. Our first objective is to learn which users would be interested in a particular good. Second, we would like to know how much to discount these users such that the entire demand is realized, but not so much that profits are decreased. We develop algorithms for multihop forwarding of discount coupons over an online social network, in which users forward such coupons to each other in return for a reward. Coupling this idea with the implicit learning associated with backpressure routing (originally developed for multihop wireless networks), we show how to realize optimal revenue. Using simulations, we illustrate its superior performance as compared to random coupon forwarding on different social network topologies. We then propose a simpler heuristic algorithm and using simulations, and show that its performance approaches that of backpressure routing.

Suggested Citation

  • Srinivas Shakkottai & Lei Ying, 2012. "Discount Targeting in Online Social Networks Using Backpressure-Based Learning," Springer Optimization and Its Applications, in: My T. Thai & Panos M. Pardalos (ed.), Handbook of Optimization in Complex Networks, chapter 0, pages 427-455, Springer.
  • Handle: RePEc:spr:spochp:978-1-4614-0857-4_14
    DOI: 10.1007/978-1-4614-0857-4_14
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-1-4614-0857-4_14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.