IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-1-4614-0574-0_3.html
   My bibliography  Save this book chapter

Method of Empirical Means in Nonlinear Regression and Stochastic Optimization Models

In: Regression Analysis Under A Priori Parameter Restrictions

Author

Listed:
  • Pavel S. Knopov

    (National Academy of Science of Ukraine)

  • Arnold S. Korkhin

    (National Mining University)

Abstract

In stochastic optimization and identification problems (Ermoliev and Wets 1988; Pflug 1996), it is not always possible to find the explicit extremum for the expectation of some random function. One of the methods for solving this problem is the method of empirical means, which consists in approximation of the existing cost function by its empiric estimate, for which one can solve the corresponding optimization problem. In addition, it is obvious that many problems in mathematical statistics (for example, estimation of unknown parameters by the least squares, the least modules, the maximum likelihood methods, etc.) can be formulated as special stochastic programming problems with specific constraints for unknown parameters which stresses the close relation between stochastic programming and estimation theory methods. In such problems the distributions of random variables or processes are often unknown, but their realizations are known. Therefore, one of the approaches for solving such problems consists in replacing the unknown distributions with empiric distributions, and replacing the corresponding mathematical expectations with their empiric means. The difficulty is in finding conditions under which the approximating problem converges in some probabilistic sense to the initial one. We discussed this briefly in Sect. 2.1. Convergence conditions are of course essentially dependent on the cost function, the probabilistic properties of random observations, metric properties of the space, in which the convergence is investigated, a priori constraints on unknown parameters, etc. In the notation used in statistical decision theory the problems above are closely related with the asymptotic properties of unknown parameters estimates, i.e. their consistency, asymptotic distribution, rate of convergence, etc.

Suggested Citation

  • Pavel S. Knopov & Arnold S. Korkhin, 2012. "Method of Empirical Means in Nonlinear Regression and Stochastic Optimization Models," Springer Optimization and Its Applications, in: Regression Analysis Under A Priori Parameter Restrictions, chapter 0, pages 73-120, Springer.
  • Handle: RePEc:spr:spochp:978-1-4614-0574-0_3
    DOI: 10.1007/978-1-4614-0574-0_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-1-4614-0574-0_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.