IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-1-4419-9637-4_8.html
   My bibliography  Save this book chapter

Quadratic Functional Equations

In: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis

Author

Listed:
  • Soon-Mo Jung

    (Hongik University)

Abstract

So far, we have discussed the stability problems of functional equations in connection with additive or linear functions. In this chapter, the Hyers–Ulam–Rassias stability of quadratic functional equations will be proved. Most mathematicians may be interested in the study of the quadratic functional equation since the quadratic functions are applied to almost every field of mathematics. In Section 8.1, the Hyers–Ulam–Rassias stability of the quadratic equation is surveyed. The stability problems for that equation on a restricted domain are discussed in Section 8.2, and the Hyers–Ulam–Rassias stability of the quadratic functional equation will be proved by using the fixed point method in Section 8.3. In Section 8.4, the Hyers–Ulam stability of an interesting quadratic functional equation different from the “original” quadratic functional equation is proved. Finally, the stability problem of the quadratic equation of Pexider type is discussed in Section 8.5.

Suggested Citation

  • Soon-Mo Jung, 2011. "Quadratic Functional Equations," Springer Optimization and Its Applications, in: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, chapter 0, pages 175-205, Springer.
  • Handle: RePEc:spr:spochp:978-1-4419-9637-4_8
    DOI: 10.1007/978-1-4419-9637-4_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-1-4419-9637-4_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.