IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-1-4419-5689-7_6.html
   My bibliography  Save this book chapter

Effect of Network Geometry and Interference on Consensus in Wireless Networks

In: Dynamics of Information Systems

Author

Listed:
  • Sundaram Vanka

    (University of Notre Dame)

  • Vijay Gupta

    (University of Notre Dame)

  • Martin Haenggi

    (University of Notre Dame)

Abstract

Summary We study the convergence of the average consensus algorithm in wireless networks in the presence of interference. It is well known that convergence of the consensus algorithm improves with network connectivity. However, from a networking standpoint, highly connected wireless networks may have lower throughput because of increased interference. This raises an interesting question: what is the effect of increased network connectivity on the convergence of the consensus algorithm, given that this connectivity comes at the cost of lower network throughput? We address this issue for two types of networks: regular lattices with periodic boundary conditions, and a hierarchical network where a backbone of nodes arranged as a regular lattice supports a collection of randomly placed nodes. We characterize the properties of an optimal Time Division Multiple Access (TDMA) protocol that maximizes the speed of convergence on these networks, and provide analytical upper and lower bounds for the achievable convergence rate. Our results show that in an interference-limited scenario the fastest converging interconnection topology for the consensus algorithm crucially depends on the geometry of node placement. In particular, we prove that asymptotically in the number of nodes, forming long-range interconnections improves the convergence rate in one-dimensional tori, while it has the opposite effect in higher dimensions.

Suggested Citation

  • Sundaram Vanka & Vijay Gupta & Martin Haenggi, 2010. "Effect of Network Geometry and Interference on Consensus in Wireless Networks," Springer Optimization and Its Applications, in: Michael J. Hirsch & Panos M. Pardalos & Robert Murphey (ed.), Dynamics of Information Systems, chapter 0, pages 125-143, Springer.
  • Handle: RePEc:spr:spochp:978-1-4419-5689-7_6
    DOI: 10.1007/978-1-4419-5689-7_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-1-4419-5689-7_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.