IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-1-4419-0437-9_9.html
   My bibliography  Save this book chapter

Global Optimality Conditions for Classes of Non-convex Multi-objective Quadratic Optimization Problems

In: Variational Analysis and Generalized Differentiation in Optimization and Control

Author

Listed:
  • V. Jeyakumar

    (University of New South Wales)

  • G. M. Lee

    (Pukyong National University)

  • G. Li

    (University of New South Wales)

Abstract

We present necessary and sufficient conditions for identifying global weak minimizers of non-convex multi-objective quadratic optimization problems. We derive these results by exploiting the hidden convexity of the joint range of (non-convex) quadratic functions. We also present numerical examples to illustrate our results.

Suggested Citation

  • V. Jeyakumar & G. M. Lee & G. Li, 2010. "Global Optimality Conditions for Classes of Non-convex Multi-objective Quadratic Optimization Problems," Springer Optimization and Its Applications, in: Regina S. Burachik & Jen-Chih Yao (ed.), Variational Analysis and Generalized Differentiation in Optimization and Control, pages 177-186, Springer.
  • Handle: RePEc:spr:spochp:978-1-4419-0437-9_9
    DOI: 10.1007/978-1-4419-0437-9_9
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Ruiz Galán, 2017. "A theorem of the alternative with an arbitrary number of inequalities and quadratic programming," Journal of Global Optimization, Springer, vol. 69(2), pages 427-442, October.
    2. P. Montiel López & M. Ruiz Galán, 2016. "Nonlinear Programming via König’s Maximum Theorem," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 838-852, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-1-4419-0437-9_9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.