IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-1-4419-0437-9_5.html
   My bibliography  Save this book chapter

A Deflected Subgradient Method Using a General Augmented Lagrangian Duality with Implications on Penalty Methods

In: Variational Analysis and Generalized Differentiation in Optimization and Control

Author

Listed:
  • Regina S. Burachik

    (University of South Australia)

  • C. Yalçın Kaya

    (University of South Australia)

Abstract

We propose a duality scheme for solving constrained nonsmooth and nonconvex optimization problems. Our approach is to use a new variant of the deflected subgradient method for solving the dual problem. Our augmented Lagrangian function induces a primal–dual method with strong duality, that is, with zero duality gap. We prove that our method converges to a dual solution if and only if a dual solution exists. We also prove that all accumulation points of an auxiliary primal sequence are primal solutions. Our results apply, in particular, to classical penalty methods, since the penalty functions associated with these methods can be recovered as a special case of our augmented Lagrangians. Besides the classical augmenting terms given by the ℓ 1- or ℓ 2-norm forms, terms of many other forms can be used in our Lagrangian function. Using a practical selection of the step-size parameters, as well as various choices of the augmenting term, we demonstrate the method on test problems. Our numerical experiments indicate that it is more favourable to use an augmenting term of an exponential form rather than the classical ℓ 1- or ℓ 2-norm forms.

Suggested Citation

  • Regina S. Burachik & C. Yalçın Kaya, 2010. "A Deflected Subgradient Method Using a General Augmented Lagrangian Duality with Implications on Penalty Methods," Springer Optimization and Its Applications, in: Regina S. Burachik & Jen-Chih Yao (ed.), Variational Analysis and Generalized Differentiation in Optimization and Control, pages 109-132, Springer.
  • Handle: RePEc:spr:spochp:978-1-4419-0437-9_5
    DOI: 10.1007/978-1-4419-0437-9_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Regina S. Burachik & Alfredo N. Iusem & Jefferson G. Melo, 2013. "An Inexact Modified Subgradient Algorithm for Primal-Dual Problems via Augmented Lagrangians," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 108-131, April.
    2. Regina Burachik & Wilhelm Freire & C. Kaya, 2014. "Interior Epigraph Directions method for nonsmooth and nonconvex optimization via generalized augmented Lagrangian duality," Journal of Global Optimization, Springer, vol. 60(3), pages 501-529, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-1-4419-0437-9_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.