IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-0-387-95857-6_22.html
   My bibliography  Save this book chapter

Interval Methods for Optimal Control

In: Variational Analysis and Aerospace Engineering

Author

Listed:
  • Andreas Rauh

    (University of Rostock)

  • Eberhard P. Hofer

    (University of Ulm)

Abstract

Bellman’s discrete dynamic programming is one of the most general approaches to solve optimal control problems. For discrete-time dynamical systems, it is, at least theoretically, capable to determine globally optimal control laws. In most practical cases, both state and control variables are subject to constraints. Due to the necessity for gridding of the range of both state and control variables in numerical implementations of dynamic programming, the computational effort grows exponentially with increasing system dimensions. This fact is well known as the curse of dimensionality. Furthermore, gridding of intervals representing uncertain system parameters is inevitable, if dynamic programming is used for the design of optimal controllers for systems with uncertainties. In this contribution, an interval arithmetic procedure for the design of optimal and robust controllers is presented. This procedure relies on the basic concepts of dynamic programming. Sophisticated techniques for the exclusion of non-optimal control strategies significantly reduce the computational burden. Since interval techniques can be applied to both continuous-time and discrete-time dynamical systems, the interval arithmetic optimization approach presented in this chapter is applicable to both cases. In addition, the inclusion of effects of uncertain parameters in the underlying optimality criteria is demonstrated. For that purpose, interval arithmetic routines for analysis and design of optimal and robust controllers have been developed. Details about computationally efficient implementations of interval arithmetic optimization procedures and numerical results for a mechanical positioning system with statedependent switchings between different dynamical models for viscous and Coulomb friction are summarized.

Suggested Citation

  • Andreas Rauh & Eberhard P. Hofer, 2009. "Interval Methods for Optimal Control," Springer Optimization and Its Applications, in: Variational Analysis and Aerospace Engineering, chapter 0, pages 397-418, Springer.
  • Handle: RePEc:spr:spochp:978-0-387-95857-6_22
    DOI: 10.1007/978-0-387-95857-6_22
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-95857-6_22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.