IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-0-387-88617-6_5.html
   My bibliography  Save this book chapter

An Enterprise Risk Management Model for Supply Chains

In: Optimization and Logistics Challenges in the Enterprise

Author

Listed:
  • John M. Mulvey

    (Princeton University)

  • Hafize G. Erkan

    (Princeton University)

Abstract

Summary The design of an optimal supply chain rarely considers uncertainty within the modeling framework. This omission is due to several factors, including tradition, model size, and the difficulty in measuring the stochastic parameters. We show that a stochastic program provides an ideal framework for optimizing a large supply chain in the face of an uncertain future. The goal is to reduce disruptions and to minimize expected costs under a set of plausible scenarios. We illustrate the methodology with a global production problem possessing currency movements.

Suggested Citation

  • John M. Mulvey & Hafize G. Erkan, 2009. "An Enterprise Risk Management Model for Supply Chains," Springer Optimization and Its Applications, in: Wanpracha Chaovalitwongse & Kevin C. Furman & Panos M. Pardalos (ed.), Optimization and Logistics Challenges in the Enterprise, pages 177-189, Springer.
  • Handle: RePEc:spr:spochp:978-0-387-88617-6_5
    DOI: 10.1007/978-0-387-88617-6_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-88617-6_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.