IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-0-387-88617-6_13.html
   My bibliography  Save this book chapter

The Stochastic Vehicle Routing Problem for Minimum Unmet Demand

In: Optimization and Logistics Challenges in the Enterprise

Author

Listed:
  • Zhihong Shen

    (University of Southern California)

  • Fernando Ordòñez

    (University of Southern California)

  • Maged M. Dessouky

    (University of Southern California)

Abstract

Summary In this chapter, we are interested in routing vehicles to minimize unmet demand with uncertain demand and travel time parameters. Such a problem arises in situations with large demand or tight deadlines so that routes that satisfy all demand points are difficult or impossible to obtain. An important application is the distribution of medical supplies to respond to large-scale emergencies, such as natural disasters or terrorist attacks. We present a chance constrained formulation of the problem that is equivalent to a deterministic problem with modified demand and travel time parameters under mild assumptions on the distribution of stochastic parameters and relate it to a robust optimization approach. A tabu heuristic is proposed to solve this MIP and simulations are conducted to evaluate the quality of routes generated from both deterministic and chance constrained formulations. We observe that chance constrained routes can reduce the unmet demand by around 2%-6% for moderately tight deadline and total supply constraints.

Suggested Citation

  • Zhihong Shen & Fernando Ordòñez & Maged M. Dessouky, 2009. "The Stochastic Vehicle Routing Problem for Minimum Unmet Demand," Springer Optimization and Its Applications, in: Wanpracha Chaovalitwongse & Kevin C. Furman & Panos M. Pardalos (ed.), Optimization and Logistics Challenges in the Enterprise, pages 349-371, Springer.
  • Handle: RePEc:spr:spochp:978-0-387-88617-6_13
    DOI: 10.1007/978-0-387-88617-6_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keyong Lin & S. Nurmaya Musa & Hwa Jen Yap, 2022. "Vehicle Routing Optimization for Pandemic Containment: A Systematic Review on Applications and Solution Approaches," Sustainability, MDPI, vol. 14(4), pages 1-27, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-88617-6_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.