IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-0-387-77131-1_1.html
   My bibliography  Save this book chapter

Improving and Measuring the Effectiveness of Decision Analysis: Linking Decision Analysis and Behavioral Decision Research

In: Decision Modeling and Behavior in Complex and Uncertain Environments

Author

Listed:
  • Robert T. Clemen

    (Duke University)

Abstract

Although behavioral research and decision analysis began with a close connection, that connection appears to have diminished over time. This chapter discusses how to re-establish the connection between the disciplines in two distinct ways. First, theoretical and empirical results in behavioral research in many cases provide a basis for crafting improved prescriptive decision analysis methods. Several productive applications of behavioral results to decision analysis are reviewed, and suggestions are made for additional areas in which behavioral results can be brought to bear on decision analysis methods in precise ways. Pursuing behaviorally based improvements in prescriptive techniques will go a long way toward re-establishing the link between the two fields. The second way to reconnect behavioral research and decision analysis involves the development of new empirical methods for evaluating the effectiveness of prescriptive techniques. New techniques, including behaviorally based ones such as those proposed above, will undoubtedly be subjected to validation studies as part of the development process. However, validation studies typically focus on specific aspects of the decision-making process and do not answer a more fundamental question. Are the proposed methods effective in helping people achieve their objectives? More generally, if we use decision analysis techniques, will we do a better job of getting what we want over the long run than we would if we used some other decisionmaking method? In order to answer these questions, we must develop methods that will allow us to measure the effectiveness of decision-making methods. In our framework, we identify two types of effectiveness. We begin with the idea that individuals typically make choices based on their own preferences and often before all uncertainties are resolved. A decision-making method is said to be weakly effective if it leads to choices that can be shown to be preferred (in a way that we make precise) before consequences are experienced. In contrast, when the decision maker actually experiences his or her consequences, the question is whether decision analysis helps individuals do a better job of achieving their objectives in the long run. A decisionmaking method that does so is called strongly effective.We propose some methods for measuring effectiveness, discuss potential research paradigms, and suggest possible research projects. The chapter concludes with a discussion of the beneficial interplay between research on specific prescriptive methods and effectiveness studies.

Suggested Citation

  • Robert T. Clemen, 2008. "Improving and Measuring the Effectiveness of Decision Analysis: Linking Decision Analysis and Behavioral Decision Research," Springer Optimization and Its Applications, in: Tamar Kugler & J. Cole Smith & Terry Connolly & Young-Jun Son (ed.), Decision Modeling and Behavior in Complex and Uncertain Environments, pages 3-31, Springer.
  • Handle: RePEc:spr:spochp:978-0-387-77131-1_1
    DOI: 10.1007/978-0-387-77131-1_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David V. Budescu & Eva Chen, 2015. "Identifying Expertise to Extract the Wisdom of Crowds," Management Science, INFORMS, vol. 61(2), pages 267-280, February.
    2. Gary J. Summers, 2021. "Friction and Decision Rules in Portfolio Decision Analysis," Decision Analysis, INFORMS, vol. 18(2), pages 101-120, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-77131-1_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.