Author
Listed:
- Won Suk Lee
(University of Florida)
- Ismail Bogrekci
- Min Min
Abstract
This chapter describes applications of modeling in nutrient prediction, such as nitrogen (N) for citrus production and phosphorus (P) for agricultural and environmental purposes. Heavy reliance on agricultural chemicals has raised many environmental and economic concerns. Some of the environmental concerns include the presence of agricultural chemicals in groundwater and eutrophication in lakes due to excessive nutrients. To prevent groundwater contamination or eutrophication in lakes, excess use of chemicals should be avoided. Timely and efficient supplies of nutrients for agricultural production are also essential for high yield and profit. Nitrogen is an essential nutrient for growing crops and is also a concern in maintaining a healthy environment. It is well-known that excess P entering a lake from surrounding agricultural fields causes many problems, such as periodic algal blooms and displacement of native ecosystems. Currently, N and P concentrations are measured from samples obtained in agricultural fields through standard laboratory analysis procedures, which are very time consuming, costly, and labor intensive. Real-time sensing systems using N and P prediction models will enable cost-effective nutrient detection, which will greatly decrease the time and labor required for monitoring nutrient levels in crops and in tributaries of lakes. Citrus tissue samples are acquired from commercial groves at different times of the year and at different stages of growth. Soil samples are obtained from different locations in drainage basins of lakes. Reflectance spectra of samples are measured in the ultraviolet, visible, and near-infrared regions. Nutrient concentrations in the samples are correlated with the absorbance of the same samples. Prediction models are developed using different statistical methods, such as stepwise multiple linear regression (SMLR) and partial least squares (PLS) regression. Then, N and P concentrations in unknown samples are determined nondestructively from reflectance spectra of the samples. Such prediction could be used to better assess the effectiveness of best management practices for fertilizers. The sensor systems are combined with a differential Global Positioning System (DGPS) receiver, and they can generate a nutrient concentration map of the entire citrus grove or lake drainage basin under investigation.
Suggested Citation
Won Suk Lee & Ismail Bogrekci & Min Min, 2009.
"Modeling in Nutrient Sensing for Agricultural and Environmental Applications,"
Springer Optimization and Its Applications, in: Panos M. Pardalos & Petraq J. Papajorgji (ed.), Advances in Modeling Agricultural Systems, pages 297-315,
Springer.
Handle:
RePEc:spr:spochp:978-0-387-75181-8_14
DOI: 10.1007/978-0-387-75181-8_14
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
search for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-75181-8_14. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.