IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-0-387-69319-4_15.html
   My bibliography  Save this book chapter

A Hybrid Knowledge Based-Clustering Multi-Class SVM Approach for Genes Expression Analysis

In: Data Mining in Biomedicine

Author

Listed:
  • Budi Santosa

    (University of Oklahoma)

  • Tyrrell Conway

    (University of Oklahoma)

  • Theodore Trafalis

    (University of Oklahoma)

Abstract

This study utilizes Support Vector Machines (SVM) for multi-class classification of a real data set with more than two classes. The data is a set of E. coli whole-genome gene expression profiles. The problem is how to classify these genes based on their behavior in response to changing pH of the growth medium and mutation of the acid tolerance response gene regulator GadX. In order to apply these techniques, first we have to label the genes. The labels indicate the response of genes to the experimental variables: 1-unchanged, 2-decreased expression level and 3-increased expression level. To label the genes, an unsupervised K-Means clustering technique is applied in a multi-level scheme. Multi-level K-Means clustering is itself an improvement over standard K-Means applications. SVM is used here in two ways. First, labels resulting from multi-level K-Means clustering are confirmed by SVM. To judge the performance of SVM, two other methods, K-nearest neighbor (KNN) and Linear Discriminant Analysis (LDA) are implemented. The Implementation of Multi-class SVM used one-against-one method and one-against-all method. The results show that SVM outperforms KNN and LDA. The advantage of SVM includes the generalization error and the computing time. Second, different from the first application, SVM is used to label the genes after it is trained by a set of training data obtained from K-Means clustering. This alternative SVM strategy offers an improvement over standard SVM applications.

Suggested Citation

  • Budi Santosa & Tyrrell Conway & Theodore Trafalis, 2007. "A Hybrid Knowledge Based-Clustering Multi-Class SVM Approach for Genes Expression Analysis," Springer Optimization and Its Applications, in: Panos M. Pardalos & Vladimir L. Boginski & Alkis Vazacopoulos (ed.), Data Mining in Biomedicine, pages 261-274, Springer.
  • Handle: RePEc:spr:spochp:978-0-387-69319-4_15
    DOI: 10.1007/978-0-387-69319-4_15
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panos Pardalos & Vera Tomaino & Petros Xanthopoulos, 2009. "Optimization and data mining in medicine," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 215-236, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-69319-4_15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.