IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-0-387-69319-4_1.html
   My bibliography  Save this book chapter

Pattern-Based Discriminants in the Logical Analysis of Data

In: Data Mining in Biomedicine

Author

Listed:
  • Sorin Alexe

    (RUTCOR - Rutgers University Center for Operations Research)

  • Peter L. Hammer

    (RUTCOR - Rutgers University Center for Operations Research)

Abstract

Based on the concept of patterns, fundamental for the Logical Analysis of Data (LAD), we define a numerical score associated to every observation in a dataset, and show that its use allows the classification of most of the observations left unclassified by LAD. The accuracy of this extended LAD classification is compared on several publicly available benchmark datasets to that of the original LAD classification, and to that of the classifications provided by the most frequently used statistical and data mining methods.

Suggested Citation

  • Sorin Alexe & Peter L. Hammer, 2007. "Pattern-Based Discriminants in the Logical Analysis of Data," Springer Optimization and Its Applications, in: Panos M. Pardalos & Vladimir L. Boginski & Alkis Vazacopoulos (ed.), Data Mining in Biomedicine, pages 3-23, Springer.
  • Handle: RePEc:spr:spochp:978-0-387-69319-4_1
    DOI: 10.1007/978-0-387-69319-4_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bagchi, Prabir & Lejeune, Miguel A. & Alam, A., 2014. "How supply competency affects FDI decisions: Some insights," International Journal of Production Economics, Elsevier, vol. 147(PB), pages 239-251.
    2. Chun-An Chou & Tibérius O. Bonates & Chungmok Lee & Wanpracha Art Chaovalitwongse, 2017. "Multi-pattern generation framework for logical analysis of data," Annals of Operations Research, Springer, vol. 249(1), pages 329-349, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-69319-4_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.