IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-0-387-09707-7_7.html
   My bibliography  Save this book chapter

High-Performance Parallel Support Vector Machine Training

In: Parallel Scientific Computing and Optimization

Author

Listed:
  • Kristian Woodsend

    (University of Edinburgh)

  • Jacek Gondzio

    (University of Edinburgh)

Abstract

Support vector machines are a powerful machine learning technology, but the training process involves a dense quadratic optimization problem and is computationally expensive. We show how the problem can be reformulated to become suitable for high-performance parallel computing. In our algorithm, data is pre-processed in parallel to generate an approximate low-rank Cholesky decomposition. Our optimization solver then exploits the problem’s structure to perform many linear algebra operations in parallel, with relatively low data transfer between processors, resulting in excellent parallel efficiency for very-large-scale problems.

Suggested Citation

  • Kristian Woodsend & Jacek Gondzio, 2009. "High-Performance Parallel Support Vector Machine Training," Springer Optimization and Its Applications, in: Parallel Scientific Computing and Optimization, pages 83-92, Springer.
  • Handle: RePEc:spr:spochp:978-0-387-09707-7_7
    DOI: 10.1007/978-0-387-09707-7_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-09707-7_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.