IDEAS home Printed from https://ideas.repec.org/h/spr/prochp/978-3-319-73546-7_4.html
   My bibliography  Save this book chapter

Data Driven Knowledge Discovery for Continuous Process Improvement

In: Knowledge Management in Digital Change

Author

Listed:
  • Michael Kohlegger

    (University of Applied Sciences Kufstein)

  • Christian Ploder

    (Management Center Innsbruck)

Abstract

Knowledge is recognized as an organizational resource for business value creation. The work with knowledge—knowledge work—is thus an important part of value-adding processes in organizations. The ability of knowledge workers to analyze complex phenomena, interpret them and develop meaningful actions is one central part of knowledge work. The advancements of digital aids and especially the ability to analyze big amounts of data is a new phenomenon that is increasingly seen in organizations. In this work, we assume that there needs to be an interplay between digital aids and knowledge workers to allow new, deep insights into phenomena and support business value creation. We develop a model that describes how this interplay could look like and critically discuss it using real-world cases. From that, we find that it is crucial (1) separating data-driven and expert-based analysis in knowledge discovery, (2) clearly describing the problem that should be solved by the analysis, (3) understand the particular domain that analysis is applied to, (4) complement data-driven with expert-based analysis and (5) understand the entanglement of analysis and action implementation.

Suggested Citation

  • Michael Kohlegger & Christian Ploder, 2018. "Data Driven Knowledge Discovery for Continuous Process Improvement," Progress in IS, in: Klaus North & Ronald Maier & Oliver Haas (ed.), Knowledge Management in Digital Change, pages 65-81, Springer.
  • Handle: RePEc:spr:prochp:978-3-319-73546-7_4
    DOI: 10.1007/978-3-319-73546-7_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prochp:978-3-319-73546-7_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.