IDEAS home Printed from https://ideas.repec.org/h/spr/prochp/978-3-319-31686-4_6.html
   My bibliography  Save this book chapter

Fabrication Laboratories (Fab Labs)

In: The Decentralized and Networked Future of Value Creation

Author

Listed:
  • Peter Troxler

    (Rotterdam University of Applied Sciences)

Abstract

Fabrication Laboratories (Fab Labs) are publicly accessible workshops offering digital manufacturing technology and electronics tools to anyone. Fab Labs continue a tradition of places for do-it-yourself (DIY) with technology for tinkering and inventing. They stand at the beginning of what has become known as the ‘Maker Movement’. Fab Labs aim to be the places where digital manufacturing know how is shared among their users. Particularly in Europe the Fab Lab concept has inspired grass-roots communities to set up such workshops. Fab Labs have been instrumental in promoting 3D printing, since these were the places where 3D printers were available to the public. Some Fab Labs were also involved in iconic 3D printing projects and developing and improving 3D printers. However, most of the current activities in Fab Labs remain recreational or educational. Meanwhile new models for collaborative production are slowly developing. Some technical, economic and social challenges have to be resolved. And Fab Labs will have to work actively on becoming economically, socially and ecologically sustainable.

Suggested Citation

  • Peter Troxler, 2016. "Fabrication Laboratories (Fab Labs)," Progress in IS, in: Jan-Peter Ferdinand & Ulrich Petschow & Sascha Dickel (ed.), The Decentralized and Networked Future of Value Creation, pages 109-127, Springer.
  • Handle: RePEc:spr:prochp:978-3-319-31686-4_6
    DOI: 10.1007/978-3-319-31686-4_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asma Mecheter & Faris Tarlochan, 2023. "Fused Filament Fabrication Three-Dimensional Printing: Assessing the Influence of Geometric Complexity and Process Parameters on Energy and the Environment," Sustainability, MDPI, vol. 15(16), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prochp:978-3-319-31686-4_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.