IDEAS home Printed from https://ideas.repec.org/h/spr/prochp/978-3-031-56576-2_6.html
   My bibliography  Save this book chapter

Feature Selection Approach to Improve Malaria Prediction Model’s Performance for High- and Low-Endemic Areas of Tanzania

In: Artificial Intelligence Tools and Applications in Embedded and Mobile Systems

Author

Listed:
  • Martina Mariki

    (Nelson Mandela African Institution of Science and Technology)

  • Neema Mduma

    (Nelson Mandela African Institution of Science and Technology)

  • Elizabeth Mkoba

    (Nelson Mandela African Institution of Science and Technology)

Abstract

Malaria remains a significant cause of death, especially in sub-Saharan Africa, with about 228 million malaria cases worldwide. Parasitological tests, like microscopic and rapid diagnostic tests (RDT), are the recommended and standard tools for diagnosing malaria. However, clinical diagnosis is advised in areas where parasitological tests for malaria are not readily available. This method is the least expensive and most widely practiced. A clinical diagnosis called presumptive treatment is based on the patient’s signs and symptoms and physical findings at the examination. A malaria diagnosis dataset was extracted from patients’ files from four (4) identified health facilities in Kilimanjaro and Morogoro. These regions were selected to represent the country’s high- (Morogoro) and low-endemic areas (Kilimanjaro). The dataset contained 2556 instances and 36 variables. The random forest classifier, a tree-based, was used to select the most important features for malaria prediction since this classifier was selected for feature selection because it was robust and had high performance. Regional-based features were obtained to facilitate accurate prediction. The feature ranking indicated that fever is universally the most noteworthy feature for predicting malaria, followed by general body malaise, vomiting, and headache. However, these features are ranked differently across the regional datasets. Subsequently, six predictive models, using important features selected by the feature selection method, were used to evaluate the performance of the features. The identified features comply with the malaria diagnosis and treatment guidelines WHO and Tanzania Mainland provided. The compliance is observed to produce a prediction model that will fit in the current healthcare provision system.

Suggested Citation

  • Martina Mariki & Neema Mduma & Elizabeth Mkoba, 2024. "Feature Selection Approach to Improve Malaria Prediction Model’s Performance for High- and Low-Endemic Areas of Tanzania," Progress in IS, in: Jorge Marx Gómez & Anael Elikana Sam & Devotha Godfrey Nyambo (ed.), Artificial Intelligence Tools and Applications in Embedded and Mobile Systems, pages 53-69, Springer.
  • Handle: RePEc:spr:prochp:978-3-031-56576-2_6
    DOI: 10.1007/978-3-031-56576-2_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prochp:978-3-031-56576-2_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.