IDEAS home Printed from https://ideas.repec.org/h/spr/prochp/978-3-031-56576-2_20.html
   My bibliography  Save this book chapter

Mask R-CNN Model for Banana Diseases Segmentation

In: Artificial Intelligence Tools and Applications in Embedded and Mobile Systems

Author

Listed:
  • Christian A. Elinisa

    (School of Computational and Communication Science and Engineering, The Nelson Mandela African Institution of Science and Technology)

  • Neema Mduma

    (School of Computational and Communication Science and Engineering, The Nelson Mandela African Institution of Science and Technology)

Abstract

Early detection of banana diseases is necessary for developing an effective control plan and minimizing quality and financial losses. Fusarium Wilt Race 1 and Black Sigatoka diseases are among the most harmful banana diseases globally. In this study, we propose a model based on the Mask R-CNN architecture to effectively segment the damage of these two banana diseases. We also include a CNN model for classifying these diseases. We used an image dataset of 6000 banana leaves and stalks collected in the field. In our experiment, Mask R-CNN achieved a mean average precision of 0.04529, while the CNN model achieved an accuracy of 96.75%. The Mask R-CNN model was able to accurately segment areas where the banana leaves and stalk were affected by Black Sigatoka and Fusarium Wilt Race 1 diseases in the image dataset. This model can assist farmers to take the required measures for early control and minimize the harmful effects of these diseases and rescue their yields.

Suggested Citation

  • Christian A. Elinisa & Neema Mduma, 2024. "Mask R-CNN Model for Banana Diseases Segmentation," Progress in IS, in: Jorge Marx Gómez & Anael Elikana Sam & Devotha Godfrey Nyambo (ed.), Artificial Intelligence Tools and Applications in Embedded and Mobile Systems, pages 227-237, Springer.
  • Handle: RePEc:spr:prochp:978-3-031-56576-2_20
    DOI: 10.1007/978-3-031-56576-2_20
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prochp:978-3-031-56576-2_20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.