IDEAS home Printed from https://ideas.repec.org/h/spr/prochp/978-3-031-15420-1_18.html
   My bibliography  Save this book chapter

Complexity of Epidemics Models: A Case-Study of Cholera in Tanzania

In: Digital Transformation for Sustainability

Author

Listed:
  • Judith Leo

    (Nelson Mandela African Institution of Science and Technology (NM-AIST), School of Computation and Communication Science and Engineering)

Abstract

Timely prediction of Cholera epidemics is essential for preventing and controlling the size of an outbreak. Over the past years, there have been great initiatives in the development of Cholera epidemic models using mathematical techniques, which are believed to be the most powerful tools in developing mechanistic understanding of epidemics. Despite the existence of these initiatives, the timely prediction of Cholera is still a great challenge. Recently, the World Health Organization reported that “the global burdens of waterborne epidemics from environmental factors are expected to increase over-time with an increase of epidemic size.” Due to these challenges, this paper reviewed existing Cholera mathematical models and observe that they have limitations/complexities, especially when working with many variables. The use of how machine learning (ML) can be used to overcome the limitations/complexities, such as lack of effective integration of environmental factors, such as weather are investigated. Hence, the study developed an ML reference model and its development procedures, which can be used to overcome the existing complexities. The results indicate at an average of 87% that the developed measures can integrate a large number of datasets, including environmental factors for the timely prediction of Cholera epidemics in Tanzania.

Suggested Citation

  • Judith Leo, 2022. "Complexity of Epidemics Models: A Case-Study of Cholera in Tanzania," Progress in IS, in: Jorge Marx Gómez & Maria Rosa Lorini (ed.), Digital Transformation for Sustainability, pages 369-390, Springer.
  • Handle: RePEc:spr:prochp:978-3-031-15420-1_18
    DOI: 10.1007/978-3-031-15420-1_18
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prochp:978-3-031-15420-1_18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.