IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-981-33-6656-5_12.html
   My bibliography  Save this book chapter

Implementing Learning Analytic Tools in Predicting Students’ Performance in a Business School

In: Applied Advanced Analytics

Author

Listed:
  • R. Sujatha

    (PSG Institute of Management)

  • B. Uma Maheswari

    (PSG Institute of Management)

Abstract

In recent times, information technology and big data are two buzz words that have impacted all sectors including education. Research in the field of educational data mining and learning analytics is in its nascent stage. Applying analytics in education is the need of the hour, especially in the context of a developing economy like India. It is time for educational institutions to use machine learning tools to enhance teaching–learning experience. This study deploys learning analytics technique using the data of students undergoing a post-graduate management program and attempts to create a system of preventive feedback mechanism for faculty and students. In the first part, logistic regression was used to identify the academic status of foundation courses in the first semester. Six models were developed, and ‘specificity’ scores were used to test the validity of the models. In the second part of the study, the stepwise regression model was used to predict the marks of the student in the capstone course. The results showed that as the student progresses into second semester courses, the tenth and higher secondary board examination scores become irrelevant. Performance in the first semester courses greatly influences the results of the second semester. Deployment of the models developed in this study would go a long way in not only enhancing students’ performance but also more fruitful student–faculty engagement.

Suggested Citation

  • R. Sujatha & B. Uma Maheswari, 2021. "Implementing Learning Analytic Tools in Predicting Students’ Performance in a Business School," Springer Proceedings in Business and Economics, in: Arnab Kumar Laha (ed.), Applied Advanced Analytics, pages 135-146, Springer.
  • Handle: RePEc:spr:prbchp:978-981-33-6656-5_12
    DOI: 10.1007/978-981-33-6656-5_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-981-33-6656-5_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.