IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-981-13-1208-3_6.html
   My bibliography  Save this book chapter

Predicting Success Probability in Professional Tennis Tournaments Using a Logistic Regression Model

In: Advances in Analytics and Applications

Author

Listed:
  • Saurabh Srivastava

    (EXL Analytics)

Abstract

With a global audience of over 1 billion, professional tennis is the most widely followed individual sports in the world. The present study attempts to model the probability of success for a tennis player in a men’s singles tournament of a given type (ATP 250, ATP 500, ATP Masters and Grand Slams) so as to enable his management team to take better decisions with respect to his calendar planning. The model in this study tries to arrive at the probability of success in a given category of the tournament by modelling the success of an athlete in that tournament (measured by his ability to reach the quarterfinals), using the logistic regression method. The scorecard that is built uses five variable categories to arrive at the probability of success, which can be used to rank order the tournaments in a given category for a player, and can be subsequently augmented through a linear programming method to help a player arrive at the most optimum selection of tournaments.

Suggested Citation

  • Saurabh Srivastava, 2019. "Predicting Success Probability in Professional Tennis Tournaments Using a Logistic Regression Model," Springer Proceedings in Business and Economics, in: Arnab Kumar Laha (ed.), Advances in Analytics and Applications, pages 59-65, Springer.
  • Handle: RePEc:spr:prbchp:978-981-13-1208-3_6
    DOI: 10.1007/978-981-13-1208-3_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-981-13-1208-3_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.