IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-3-319-54885-2_21.html
   My bibliography  Save this book chapter

Mixture Cure Models in Prediction of Time to Default: Comparison with Logit and Cox Models

In: Contemporary Trends and Challenges in Finance

Author

Listed:
  • Ewa Wycinka

    (University of Gdansk)

  • Tomasz Jurkiewicz

    (University of Gdansk)

Abstract

Mixture cure models are an extension of the standard survival models used for predicting survivors in the case of two distinct subpopulations [Sy and Taylor (Biometrics 56: 227–236, 2000)]. The models assume that the studied population is a mixture of susceptible individuals, who may experience the event of interest, and non-susceptible individuals, who will never experience it [Corbière and Joly (Comput Methods Prog Biomed 85(2): 173–180, 2007)]. Mixture cure models were used for the first time in medical statistics to model long-term survival of cancer patients. Tong et al. (Eur J Oper Res 218(1): 132–139, 2012) introduced mixture cure models to the area of credit scoring, where a large proportion of the accounts do not experience default during the loan term. In this paper, we investigate the use of a mixture cure model for a sample of 5000 consumer credit accounts from a 60-month personal loans portfolio of a Polish financial institution. All loans have been observed for 24 months. Default is the event of interest, whereas earlier repayment is considered to be censoring. We develop and compare default prediction models using the logistic regression, Cox model and mixture cure approaches. Similarities with and differences to the study results obtained by Tong et al. (Eur J Oper Res 218(1): 132–139, 2012) are scrutinised. The final discussion focuses on the usefulness of mixture cure models in predicting the probability of default, and the limitations of these models.

Suggested Citation

  • Ewa Wycinka & Tomasz Jurkiewicz, 2017. "Mixture Cure Models in Prediction of Time to Default: Comparison with Logit and Cox Models," Springer Proceedings in Business and Economics, in: Krzysztof Jajuga & Lucjan T. Orlowski & Karsten Staehr (ed.), Contemporary Trends and Challenges in Finance, pages 221-231, Springer.
  • Handle: RePEc:spr:prbchp:978-3-319-54885-2_21
    DOI: 10.1007/978-3-319-54885-2_21
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-3-319-54885-2_21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.