IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-3-319-54885-2_20.html
   My bibliography  Save this book chapter

Bootstrap Mean Squared Error of Prediction in Loss Reserving

In: Contemporary Trends and Challenges in Finance

Author

Listed:
  • Alicja Wolny-Dominiak

    (University of Economics in Katowice)

Abstract

The prediction of total loss reserve in non-life insurance company is considered. One of the methods currently used in practice applies the generalized linear model (GLM). In the literature one can find the justified extension of the GLM to the hierarchical generalized linear model (HGLM) for loss reserving. A limitation in the use of the HGLM is the fact that the mean squared error of prediction (MSEP) is expressed by a complex analytical formula. An alternative to the analytical formula is to use the bootstrap procedure approximating the sampling distribution of the MSEP. This paper study two ways of bootstrap. The first one is the parametric bootstrap in which one simulates from fitted values of the HGLM. This approach is sensitive to incorrect fit of the model. Therefore the alternative is the simulation by resampling residuals and adding them back to the fitted values. The paper contains the comparison of this two approaches applying the loss triangle investigated by several authors. Bootstrap procedures are implemented in R software and the code is available to download (see http://web.ue.katowice.pl/woali/ ).

Suggested Citation

  • Alicja Wolny-Dominiak, 2017. "Bootstrap Mean Squared Error of Prediction in Loss Reserving," Springer Proceedings in Business and Economics, in: Krzysztof Jajuga & Lucjan T. Orlowski & Karsten Staehr (ed.), Contemporary Trends and Challenges in Finance, pages 213-220, Springer.
  • Handle: RePEc:spr:prbchp:978-3-319-54885-2_20
    DOI: 10.1007/978-3-319-54885-2_20
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-3-319-54885-2_20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.