IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-3-319-33003-7_14.html
   My bibliography  Save this book chapter

Optimal Active Power Management in All Electric Ship Employing DC Grid Technology

In: Operational Research in Business and Economics

Author

Listed:
  • Fotis D. Kanellos

    (Technical University of Crete)

  • John Prousalidis

    (National Technical University of Athens, Zografos)

  • George J. Tsekouras

    (Hellenic Naval Academy)

Abstract

Extensive electrification and the use of dc distribution grid are recently proved to be very promising technologies for the development of more efficient and environmentally friendly ships. Onboard dc grids present several advantages such as, improved efficiency, easy integration of different types of power sources, reduced size and rating of switchboard, elimination of reactive power flow, increased reconfiguration capability etc. All electric ship (AES) concept, dc distribution grid and optimal power management can lead to a substantial improvement of ship efficiency and compliance with the environmental constraints. In this paper, a method for optimal demand side management and power generation scheduling is proposed for AES employing dc grid. Demand side management is based on the adjustment of the power consumed by ship electric propulsion motors. Dynamic programming algorithm subject to operation, environmental and travel constraints is used to solve the above problem.

Suggested Citation

  • Fotis D. Kanellos & John Prousalidis & George J. Tsekouras, 2017. "Optimal Active Power Management in All Electric Ship Employing DC Grid Technology," Springer Proceedings in Business and Economics, in: Evangelos Grigoroudis & Michael Doumpos (ed.), Operational Research in Business and Economics, pages 271-284, Springer.
  • Handle: RePEc:spr:prbchp:978-3-319-33003-7_14
    DOI: 10.1007/978-3-319-33003-7_14
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nivolianiti, Evaggelia & Karnavas, Yannis L. & Charpentier, Jean-Frederic, 2024. "Energy management of shipboard microgrids integrating energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Xin Peng & Hui Chen & Cong Guan, 2023. "Energy Management Optimization of Fuel Cell Hybrid Ship Based on Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 16(3), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-3-319-33003-7_14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.