IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-3-031-72494-7_29.html
   My bibliography  Save this book chapter

Using Explanations to Estimate the Quality of Computer Vision Models

Author

Listed:
  • Filipe Oliveira

    (INESC TEC)

  • Davide Carneiro

    (INESC TEC
    ESTG, Politécnico do Porto)

  • João Pereira

    (CIICESI, ESTG, Politécnico do Porto)

Abstract

Explainable AI (xAI) emerged as one of the ways of addressing the interpretability issues of the so-called black-box models. Most of the xAI artifacts proposed so far were designed, as expected, for human users. In this work, we posit that such artifacts can also be used by computer systems. Specifically, we propose a set of metrics derived from LIME explanations, that can eventually be used to ascertain the quality of each output of an underlying image classification model. We validate these metrics against quantitative human feedback, and identify 4 potentially interesting metrics for this purpose. This research is particularly useful in concept drift scenarios, in which models are deployed into production and there is no new labelled data to continuously evaluate them, becoming impossible to know the current performance of the model.

Suggested Citation

  • Filipe Oliveira & Davide Carneiro & João Pereira, 2025. "Using Explanations to Estimate the Quality of Computer Vision Models," Springer Proceedings in Business and Economics,, Springer.
  • Handle: RePEc:spr:prbchp:978-3-031-72494-7_29
    DOI: 10.1007/978-3-031-72494-7_29
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-3-031-72494-7_29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.