IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-3-031-49951-7_1.html
   My bibliography  Save this book chapter

Multi-period Portfolio Optimisation Using a Regime-Switching Predictive Framework

In: New Perspectives and Paradigms in Applied Economics and Business

Author

Listed:
  • Piotr Pomorski

    (University College London)

  • Denise Gorse

    (University College London)

Abstract

Regime-switching poses both problems and opportunities for portfolio managers. If a switch in the behaviour of the markets is not quickly detected it can be a source of loss, since previous trading positions may be inappropriate in the new regime. However, if a regime-switch can be detected quickly, and especially if it can be predicted ahead of time, these changes in market behaviour can instead be a source of substantial profit. The work of this paper builds on two previous works by the authors, the first of these dealing with regime detection and the second, which is an extension of the first, with regime prediction. Specifically, this work uses our previous regime-prediction model (KMRF) within a framework of multi-period portfolio optimisation, achieved by model predictive control, (MPC), with the KMRF-derived return estimates accuracy-boosted by means of a novel use of a Kalman filter. The resulting proposed model, which we term the KMRF+MPC model, to reflect its constituent methodologies, is demonstrated to outperform industry-standard benchmarks, even though it is restricted, in order to be acceptable to the widest range of investors, to long-only positions.

Suggested Citation

  • Piotr Pomorski & Denise Gorse, 2024. "Multi-period Portfolio Optimisation Using a Regime-Switching Predictive Framework," Springer Proceedings in Business and Economics, in: William C. Gartner (ed.), New Perspectives and Paradigms in Applied Economics and Business, pages 3-15, Springer.
  • Handle: RePEc:spr:prbchp:978-3-031-49951-7_1
    DOI: 10.1007/978-3-031-49951-7_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-3-031-49951-7_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.