IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-3-030-75166-1_32.html
   My bibliography  Save this book chapter

Two-Stage Chance-Constrained Telemedicine Assignment Model with No-Show Behavior and Uncertain Service Duration

In: AI and Analytics for Public Health

Author

Listed:
  • Menglei Ji

    (Beijing Institute of Technology)

  • Jinlin Li

    (Beijing Institute of Technology)

  • Chun Peng

    (HEC Montréal & GERAD)

Abstract

The current global pandemic of COVID-19 has caused significant strain on the medical resources of the healthcare providers, so more and more hospitals use telemedicine and virtual care for remote treatment (i.e. consulting, remote diagnosis, treatment, monitoring and follow-ups and so on) in response to COVID-19 pandemic, which is expected to deliver timely care while minimizing exposure to protect medical practitioners and patients. In this study, we study the telemedicine assignment between the patients and telemedical specialists by considering different sources of uncertainty, i.e. uncertain service duration and the no-show behavior of the doctors that is caused by the unexpected situations (i.e. emergency events). We propose a two-stage chance-constrained model with the assignment decisions in the recourse problem and employ an uncertainty set to capture the behavior of telemedical doctors, which finally gives rise to a two-stage binary integer program with binary variables in the recourse problem. We propose an enumeration-based column-and-constraint generation solution method to solve the resulting problem. A simple numerical study is done to illustrate our proposed framework. To the best of our knowledge, this is the first attempt to incorporate the behavior of doctors and uncertain service duration for the telemedicine assignment problem in the literature. We expect that this work could open an avenue for the research of telemedicine by incorporating different sources of uncertainty from an operations management viewpoint, especially in the context of a data-driven optimization framework.

Suggested Citation

  • Menglei Ji & Jinlin Li & Chun Peng, 2022. "Two-Stage Chance-Constrained Telemedicine Assignment Model with No-Show Behavior and Uncertain Service Duration," Springer Proceedings in Business and Economics, in: Hui Yang & Robin Qiu & Weiwei Chen (ed.), AI and Analytics for Public Health, pages 431-442, Springer.
  • Handle: RePEc:spr:prbchp:978-3-030-75166-1_32
    DOI: 10.1007/978-3-030-75166-1_32
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-3-030-75166-1_32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.