IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-3-030-75166-1_3.html
   My bibliography  Save this book chapter

Optimal Dispatch in Emergency Service System via Reinforcement Learning

In: AI and Analytics for Public Health

Author

Listed:
  • Cheng Hua

    (Shanghai Jiaotong University)

  • Tauhid Zaman

    (Yale University)

Abstract

In the United States, medical responses by fire departments over the last four decades increased by 367%. This had made it critical to decision makers in emergency response departments that existing resources are efficiently used. In this paper, we model the ambulance dispatch problem as an average-cost Markov decision process and present a policy iteration approach to find an optimal dispatch policy. We then propose an alternative formulation using post-decision states that is shown to be mathematically equivalent to the original model, but with a much smaller state space. We present a temporal difference learning approach to the dispatch problem based on the post-decision states. In our numerical experiments, we show that our obtained temporal-difference policy outperforms the benchmark myopic policy. Our findings suggest that emergency response departments can improve their performance with minimal to no cost.

Suggested Citation

  • Cheng Hua & Tauhid Zaman, 2022. "Optimal Dispatch in Emergency Service System via Reinforcement Learning," Springer Proceedings in Business and Economics, in: Hui Yang & Robin Qiu & Weiwei Chen (ed.), AI and Analytics for Public Health, pages 75-87, Springer.
  • Handle: RePEc:spr:prbchp:978-3-030-75166-1_3
    DOI: 10.1007/978-3-030-75166-1_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-3-030-75166-1_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.