IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-3-030-57065-1_1.html
   My bibliography  Save this book chapter

Display Advertising and Brand Awareness in Search Engines: Predicting the Engagement of Branded Search Traffic Visitors

In: Business Intelligence and Modelling

Author

Listed:
  • Ioannis C. Drivas

    (University of West Attica)

  • Damianos P. Sakas

    (University of West Attica
    School of Applied Economics and Social Sciences, Agricultural University of Athens)

  • Georgios A. Giannakopoulos

    (University of West Attica)

Abstract

Display advertising constitutes one of the most efficient digital marketing strategies for the development of organizations’ brand awareness. Proper targeting of display ads campaigns potentially leads to the improvement of web users’ consideration and engagement about products and services that organizations offer through their websites. As prior studies indicate, this kind of consideration and engagement, which resulted through display ads, leads web users to type the name of the brand in search engines. The submitted search terms that contain the brand name of the organizations are called branded keywords, and the traffic that comes from them as branded search traffic. In this paper, the authors propose a computational data-driven methodology for the estimation and prediction of display advertising effectiveness in terms of optimizing brand popularity in search engines. One step further, preliminary research efforts of the authors indicate that branded search traffic visitors show higher interaction with the content of the websites regarding the time they spend and the number of pageviews they are browsing. In this respect, if display advertising campaigns increase the number of branded keywords and hence, the volume of branded search traffic, then this raises opportunities to optimize users’ engagement inside websites. Against this research gap, the authors proceed into a data-driven methodological process that is expanded in three major stages. In the first stage, the web mining process of extracting several web behavioral analytics metrics takes place for 125 continuous days at 7 courseware websites. At the second stage, analysis and interpretation of possible intercorrelations between the web analytics metrics take place with the purpose to integrate a computational model that relies on web behavioral data harvesting and their statistical analysis. Subsequently, in the third stage, the authors develop a data-driven computational model based on the agent-based modeling approach for estimating and predicting the optimal interaction rates of branded search traffic visitors of the examined websites. The results of the study constitute a practical toolbox for digital marketing practitioners in order to understand their display advertising effectiveness in terms of brand popularity and branded search traffic improvement for their websites.

Suggested Citation

  • Ioannis C. Drivas & Damianos P. Sakas & Georgios A. Giannakopoulos, 2021. "Display Advertising and Brand Awareness in Search Engines: Predicting the Engagement of Branded Search Traffic Visitors," Springer Proceedings in Business and Economics, in: Damianos P. Sakas & Dimitrios K. Nasiopoulos & Yulia Taratuhina (ed.), Business Intelligence and Modelling, pages 3-15, Springer.
  • Handle: RePEc:spr:prbchp:978-3-030-57065-1_1
    DOI: 10.1007/978-3-030-57065-1_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Damianos P. Sakas & Dimitrios P. Reklitis, 2021. "The Impact of Organic Traffic of Crowdsourcing Platforms on Airlines’ Website Traffic and User Engagement," Sustainability, MDPI, vol. 13(16), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-3-030-57065-1_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.