IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-3-030-53356-4_8.html
   My bibliography  Save this book chapter

Economic Games as Estimators

In: Mathematical Research for Blockchain Economy

Author

Listed:
  • Michael Zargham

    (Vienna University of Economics and Business
    BlockScience, Inc, Tempe)

  • Krzysztof Paruch

    (Vienna University of Economics and Business)

  • Jamsheed Shorish

    (Vienna University of Economics and Business)

Abstract

Discrete event games are discrete time dynamical systems whose state transitions are discrete events caused by actions taken by agents within the game. The agents’ objectives and associated decision rules need not be known to the game designer in order to impose structure on a game’s reachable states. Mechanism design for discrete event games is accomplished by declaring desirable invariant properties and restricting the state transition functions to conserve these properties at every point in time for all admissible actions and for all agents, using techniques familiar from state-feedback control theory. Building upon these connections to control theory, a framework is developed to equip these games with estimation properties of signals which are private to the agents playing the game. Token bonding curves are presented as discrete event games and numerical experiments are used to investigate their signal processing properties with a focus on input-output response dynamics.

Suggested Citation

  • Michael Zargham & Krzysztof Paruch & Jamsheed Shorish, 2020. "Economic Games as Estimators," Springer Proceedings in Business and Economics, in: Panos Pardalos & Ilias Kotsireas & Yike Guo & William Knottenbelt (ed.), Mathematical Research for Blockchain Economy, pages 125-142, Springer.
  • Handle: RePEc:spr:prbchp:978-3-030-53356-4_8
    DOI: 10.1007/978-3-030-53356-4_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew Clark & Alexander Mihailov & Michael Zargham, 2024. "Complex Systems Modeling of Community Inclusion Currencies," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1259-1294, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-3-030-53356-4_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.