IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-3-030-43078-8_13.html
   My bibliography  Save this book chapter

Geometric Distribution as Means of Increasing Power in Backtesting VaR

In: Contemporary Trends and Challenges in Finance

Author

Listed:
  • Marta Małecka

    (University of Łódź)

Abstract

We explore properties of the geometric distribution as means of constructing conditional coverage VaR tests. We study properties of these tests using asymptotic convergence of the test statistics. In this way, we replace Monte Carlo simulated distributions. We provide a unified framework that allows for effective comparison of various procedures. To achieve comparability we modify test statistics and adapt them to the conditional coverage hypothesis. We show that two tests that indirectly use properties of the geometric distribution—the test based on the General Method of Moments and the test based on the Gini coefficient—may be conveniently implemented with the use of known theoretical distributions. We argue that replacing Monte Carlo simulations with these distributions does not pose the risk of overrejecting correct risk models. We also demonstrate their efficiency at detecting incorrect models. We include practical guidelines about significance level and sample size that ensure accurate and efficient testing.

Suggested Citation

  • Marta Małecka, 2020. "Geometric Distribution as Means of Increasing Power in Backtesting VaR," Springer Proceedings in Business and Economics, in: Krzysztof Jajuga & Hermann Locarek-Junge & Lucjan T. Orlowski & Karsten Staehr (ed.), Contemporary Trends and Challenges in Finance, pages 159-167, Springer.
  • Handle: RePEc:spr:prbchp:978-3-030-43078-8_13
    DOI: 10.1007/978-3-030-43078-8_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-3-030-43078-8_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.