IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-3-030-37110-4_10.html
   My bibliography  Save this book chapter

Neural Networks for Cryptocurrency Evaluation and Price Fluctuation Forecasting

In: Mathematical Research for Blockchain Economy

Author

Listed:
  • Emmanouil Christoforou

    (National and Kapodistrian University of Athens)

  • Ioannis Z. Emiris

    (National and Kapodistrian University of Athens
    ATHENA Research and Innovation Center)

  • Apostolos Florakis

    (National and Kapodistrian University of Athens)

Abstract

Today, there is a growing number of digital assets, often built on questionable technical foundations. We design and implement neural networks in order to explore different aspects of a cryptocurrency affecting its performance, its stability as well as its daily price fluctuation. One characteristic feature of our approach is that we aim at a holistic view that would integrate all available information: First, financial information, including market capitalization and historical daily prices. Second, features related to the underlying blockchain from blockchain explorers like network activity: blockchains handle the supply and demand of a cryptocurrency. Lastly, we integrate software development metrics based on GitHub activity by the supporting team. We set two goals: First, to classify a given cryptocurrency by its performance, where stability and price increase are the positive features. Second, to forecast daily price tendency through regression; this is of course a well-studied problem. A related third goal is to determine the most relevant features for such analysis. We compare various neural networks using most of the widely traded digital currencies (e.g. Bitcoin, Ethereum and Litecoin) in both classification and regression settings. Simple Feedforward neural networks are considered, as well as Recurrent neural networks (RNN) along with their improvements, namely Long Short-Term Memory and Gated Recurrent Units. The results of our comparative analysis indicate that RNNs provide the most promising results.

Suggested Citation

  • Emmanouil Christoforou & Ioannis Z. Emiris & Apostolos Florakis, 2020. "Neural Networks for Cryptocurrency Evaluation and Price Fluctuation Forecasting," Springer Proceedings in Business and Economics, in: Panos Pardalos & Ilias Kotsireas & Yike Guo & William Knottenbelt (ed.), Mathematical Research for Blockchain Economy, pages 133-149, Springer.
  • Handle: RePEc:spr:prbchp:978-3-030-37110-4_10
    DOI: 10.1007/978-3-030-37110-4_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Apostolos Chalkis & Emmanouil Christoforou & Ioannis Z. Emiris & Theodore Dalamagas, 2020. "Modeling asset allocation strategies and a new portfolio performance score," Papers 2012.05088, arXiv.org, revised Sep 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-3-030-37110-4_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.