IDEAS home Printed from https://ideas.repec.org/h/spr/prbchp/978-3-030-30967-1_8.html
   My bibliography  Save this book chapter

Predicting Metropolitan Crime Rates Using Machine Learning Techniques

In: Smart Service Systems, Operations Management, and Analytics

Author

Listed:
  • Saba Moeinizade

    (Iowa State University)

  • Guiping Hu

    (Iowa State University)

Abstract

The concept of smart city has been gaining public interests with the considerations of socioeconomic development and quality of life. Smart initiatives have been proposed in multiple domains, such as health, energy, and public safety. One of the key factors that impact the quality of life is the crime rate in a metropolitan area. Predicting crime patterns is a significant task to develop more efficient strategies either to prevent crimes or to improve the investigation efforts. In this research, we use machine learningMachine learning techniques to solve a multinomial classificationMultinomial classification problem where the goal is to predict the crime categories with spatiotemporal data. As a case study, we use San Francisco crime data from San Francisco Police Department (SFPD). Various classification methods such as Multinomial Logistic Regression, Random Forests, Lightgbm, and Xgboost have been adopted to predict the category of crime. Feature engineering was employed to boost the model performance. The results demonstrate that our proposed classifier outperforms other published models.

Suggested Citation

  • Saba Moeinizade & Guiping Hu, 2020. "Predicting Metropolitan Crime Rates Using Machine Learning Techniques," Springer Proceedings in Business and Economics, in: Hui Yang & Robin Qiu & Weiwei Chen (ed.), Smart Service Systems, Operations Management, and Analytics, pages 77-86, Springer.
  • Handle: RePEc:spr:prbchp:978-3-030-30967-1_8
    DOI: 10.1007/978-3-030-30967-1_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:prbchp:978-3-030-30967-1_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.