IDEAS home Printed from https://ideas.repec.org/h/spr/oprchp/978-3-540-69995-8_40.html
   My bibliography  Save this book chapter

Robustness of Econometric Variable Selection Methods

In: Operations Research Proceedings 2006

Author

Listed:
  • Bernd Brandl

    (University of Vienna)

Abstract

Variable selection in cross-country growth regression models is currently a major open research topic and has inspired theoretical and empirical literature, see [6]. There are two categories of research problems that are intimately connected. The first problem is model uncertainty and the second is data heterogeneity. Recent literature aims to overcome the first problem by applying Bayesian Model Averaging (BMA) approaches in finding important, robust and significant variables to explain economic growth. While BMA offers an appealing approach to handle model uncertainty very little research has been undertaken to consider the problem of data heterogeneity. In this paper we analyze the issue of data heterogeneity on the basis of the exclusion of countries, i.e. we will take a closer look at the robustness of approaches when countries are eliminated from the data set. We will show that results of BMA are very sensitive to small variations in data. As an alternative to BMA in the cross-country growth regression debate we suggest the use of “classical” Bayesian Model Selection (BMS). We will argue that there is much in favor of BMS and will show that BMS is less sensitive in the identification of important, robust and significant variables when small variations in data are made. Our empirical results are undertaken on the most frequently used data set in the cross-country growth debate provided by [4].

Suggested Citation

  • Bernd Brandl, 2007. "Robustness of Econometric Variable Selection Methods," Operations Research Proceedings, in: Karl-Heinz Waldmann & Ulrike M. Stocker (ed.), Operations Research Proceedings 2006, pages 239-244, Springer.
  • Handle: RePEc:spr:oprchp:978-3-540-69995-8_40
    DOI: 10.1007/978-3-540-69995-8_40
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:oprchp:978-3-540-69995-8_40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.