Author
Listed:
- Gilyana Borlikova
(Natural Computing Research & Applications Group, School of Business, University College Dublin)
- Michael Phillips
(ICON plc)
- Louis Smith
(ICON plc)
- Miguel Nicolau
(Natural Computing Research & Applications Group, School of Business, University College Dublin)
- Michael O’Neill
(Natural Computing Research & Applications Group, School of Business, University College Dublin)
Abstract
For a drug to be approved for human use, its safety and efficacy need to be evidenced through clinical trials. At present, patient recruitment is a major bottleneck in conducting clinical trials. Pharma and contract research organisations (CRO) are actively looking into optimisation of different aspects of patient recruitment. One of the avenues to approach this business problem is to improve the quality of selection of investigators/sites at the start of a trial. This study builds upon previous work that used Grammatical Evolution (GE) to evolve classification models to predict the future patient enrolment performance of investigators/sites considered for a trial. Selection of investigators/sites, depending on the business context, could benefit from the use of either especially conservative or more liberal predictive models. To address this business need, decision-tree type classifiers were evolved utilising different fitness functions to drive GE. The functions compared were classical accuracy, balanced accuracy and F-measure with different values of parameter beta. The issue of models’ generalisability was addressed by introduction of a validation procedure. The predictive power of the resultant GE-evolved models on the test set was compared with performance of a range of machine learning algorithms widely used for classification. The results of the study demonstrate that flexibility of GE induced classification models can be used to address business needs in the area of patient recruitment in clinical trials.
Suggested Citation
Gilyana Borlikova & Michael Phillips & Louis Smith & Miguel Nicolau & Michael O’Neill, 2018.
"Alternative Fitness Functions in the Development of Models for Prediction of Patient Recruitment in Multicentre Clinical Trials,"
Operations Research Proceedings, in: Andreas Fink & Armin Fügenschuh & Martin Josef Geiger (ed.), Operations Research Proceedings 2016, pages 375-381,
Springer.
Handle:
RePEc:spr:oprchp:978-3-319-55702-1_50
DOI: 10.1007/978-3-319-55702-1_50
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
search for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:oprchp:978-3-319-55702-1_50. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.