IDEAS home Printed from https://ideas.repec.org/h/spr/oprchp/978-3-319-42902-1_7.html
   My bibliography  Save this book chapter

LP-Based Relaxations of the Skiving Stock Problem—Improved Upper Bounds for the Gap

In: Operations Research Proceedings 2015

Author

Listed:
  • John Martinovic

    (Technische Universität Dresden)

  • Guntram Scheithauer

    (Technische Universität Dresden)

Abstract

We consider the one-dimensional skiving stock problem (SSP) which is strongly related to the dual bin-packing problem in literature. In the classical formulation, different (small) item lengths and corresponding availabilities are given. We aim at maximizing the number of objects with a certain minimum length that can be constructed by connecting the items on hand. Such computations are of high interest in many real world application, e.g. in industrial recycling processes, wireless communications and politico-economic questions. For this optimization problem, we give a short introduction by outlining different modelling approaches, particularly the pattern-based standard model, and mentioning their relationships. Since the SSP is known to be NP-hard a common solution approach consists in solving an LP-based relaxation and the application of (appropriate) heuristics. Practical experience and computational simulations have shown that there is only a small difference (called gap) between the optimal objective values of the relaxation and the SSP itself. In this paper, we will present some new results and improved upper bounds for the gap of the SSP that are based on the theory of residual instances of the skiving stock problem.

Suggested Citation

  • John Martinovic & Guntram Scheithauer, 2017. "LP-Based Relaxations of the Skiving Stock Problem—Improved Upper Bounds for the Gap," Operations Research Proceedings, in: Karl Franz Dörner & Ivana Ljubic & Georg Pflug & Gernot Tragler (ed.), Operations Research Proceedings 2015, pages 49-54, Springer.
  • Handle: RePEc:spr:oprchp:978-3-319-42902-1_7
    DOI: 10.1007/978-3-319-42902-1_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:oprchp:978-3-319-42902-1_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.