IDEAS home Printed from https://ideas.repec.org/h/spr/oprchp/978-3-319-28697-6_54.html
   My bibliography  Save this book chapter

Tight Upper Bounds on the Cardinality Constrained Mean-Variance Portfolio Optimization Problem Using Truncated Eigendecomposition

In: Operations Research Proceedings 2014

Author

Listed:
  • Fred Mayambala

    (Makerere University)

  • Elina Rönnberg

    (Linköping University)

  • Torbjörn Larsson

    (Linköping University)

Abstract

The mean-variance problem introduced by Markowitz in 1952 is a fundamental model in portfolio optimization up to date. When cardinality and bound constraints are included, the problem becomes NP-hard and the existing optimizing solution methods for this problem take a large amount of time. We introduce a core problem based method for obtaining upper bounds to the mean-variance portfolio optimization problem with cardinality and bound constraints. The method involves performing eigendecomposition on the covariance matrix and then using only few of the eigenvalues and eigenvectors to obtain an approximation of the original problem. A solution to this approximate problem has a relatively low cardinality and it is used to construct a core problem. When solved, the core problem provides an upper bound. We test the method on large-scale instances of up to 1000 assets. The obtained upper bounds are of high quality and the time required to obtain them is much less than what state-of-the-art mixed integer softwares use, which makes the approach practically useful.

Suggested Citation

  • Fred Mayambala & Elina Rönnberg & Torbjörn Larsson, 2016. "Tight Upper Bounds on the Cardinality Constrained Mean-Variance Portfolio Optimization Problem Using Truncated Eigendecomposition," Operations Research Proceedings, in: Marco Lübbecke & Arie Koster & Peter Letmathe & Reinhard Madlener & Britta Peis & Grit Walther (ed.), Operations Research Proceedings 2014, edition 1, pages 385-392, Springer.
  • Handle: RePEc:spr:oprchp:978-3-319-28697-6_54
    DOI: 10.1007/978-3-319-28697-6_54
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:oprchp:978-3-319-28697-6_54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.