IDEAS home Printed from https://ideas.repec.org/h/spr/oprchp/978-3-319-28697-6_15.html
   My bibliography  Save this book chapter

Robust Scheduling with Logic-Based Benders Decomposition

In: Operations Research Proceedings 2014

Author

Listed:
  • Elvin Coban

    (Özyeǧin University)

  • Aliza Heching

    (IBM Thomas J. Watson Research Center)

  • J. N. Hooker

    (Carnegie Mellon University)

  • Alan Scheller-Wolf

    (Carnegie Mellon University)

Abstract

We study project scheduling at a large IT services delivery center in which there are unpredictable delays. We apply robust optimization to minimize tardiness while informing the customer of a reasonable worst-case completion time, based on empirically determined uncertainty sets. We introduce a new solution method based on logic-based Benders decomposition. We show that when the uncertainty set is polyhedral, the decomposition simplifies substantially, leading to a model of tractable size. Preliminary computational experience indicates that this approach is superior to a mixed integer programming model solved by state-of-the-art software.

Suggested Citation

  • Elvin Coban & Aliza Heching & J. N. Hooker & Alan Scheller-Wolf, 2016. "Robust Scheduling with Logic-Based Benders Decomposition," Operations Research Proceedings, in: Marco Lübbecke & Arie Koster & Peter Letmathe & Reinhard Madlener & Britta Peis & Grit Walther (ed.), Operations Research Proceedings 2014, edition 1, pages 99-105, Springer.
  • Handle: RePEc:spr:oprchp:978-3-319-28697-6_15
    DOI: 10.1007/978-3-319-28697-6_15
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silva, Marco & Poss, Michael & Maculan, Nelson, 2020. "Solution algorithms for minimizing the total tardiness with budgeted processing time uncertainty," European Journal of Operational Research, Elsevier, vol. 283(1), pages 70-82.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:oprchp:978-3-319-28697-6_15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.