IDEAS home Printed from https://ideas.repec.org/h/spr/oprchp/978-3-319-07001-8_3.html
   My bibliography  Save this book chapter

Misspecified Dependency Modelling: What Does It Mean for Risk Measurement?

In: Operations Research Proceedings 2013

Author

Listed:
  • Theo Berger

    (University of Bremen)

Abstract

Forecasting portfolio risk requires both, estimation of marginal return distributions for individual assets and dependence structure of returns as well. Due to the fact, that the marginal return distribution represents the main impact factor on portfolio volatility, the impact of dependency modeling which is required for instance in the field of Credit Pricing, Portfolio Sensitivity Analysis or Correlation Trading is rarely investigated that far. In this paper, we explicitly focus on the impact of decoupled dependency modeling in the context of risk measurement. We do so, by setting up an extensive simulation analysis which enables us to analyze competing copula approaches (Clayton, Frank, Gauss, Gumbel and t copula) under the assumption that the “true” marginal distribution is known. By simulating return series with different realistic dependency schemes accounting for time varying dependency as well as tail dependence, we show that the choice of copula becomes crucial for VaR, especially in volatile dependency schemes. Albeit the Gauss copula approach does neither account for time variance nor for tail dependence, it represents a solid tool throughout all investigated dependency schemes.

Suggested Citation

  • Theo Berger, 2014. "Misspecified Dependency Modelling: What Does It Mean for Risk Measurement?," Operations Research Proceedings, in: Dennis Huisman & Ilse Louwerse & Albert P.M. Wagelmans (ed.), Operations Research Proceedings 2013, edition 127, pages 15-22, Springer.
  • Handle: RePEc:spr:oprchp:978-3-319-07001-8_3
    DOI: 10.1007/978-3-319-07001-8_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:oprchp:978-3-319-07001-8_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.