Author
Listed:
- Sonja Babrowski
(Karlsruhe Institute of Technology (KIT), Institute for Industrial Production)
- Patrick Jochem
(Karlsruhe Institute of Technology (KIT), Institute for Industrial Production)
- Wolf Fichtner
(Karlsruhe Institute of Technology (KIT), Institute for Industrial Production)
Abstract
The need for daily electricity storage systems increases with the growing share of volatile renewable energy in the generation mix. Since the location of decentralized electricity generation (based on reneweable energy resource potentials) and electricity demand (depending on industrial facilities and population density) in Germany are geographically apart from each other, at the same time more electricity has to be transported. At certain times, this might challenge the transmission grid. Storage systems can be used for storing the surplus production of renewable energy and also help to prevent congestions in the grid. However, besides the technical feasibility there are economic criteria decisive for the installation of storage systems. These depend firstly on potential alternative technologies as gas turbines or the load shift potential of electric vehicles and secondly on the price development of storage systems. In order to estimate the future demand and the strategic allocation of daily storage systems in this context, expansion options for storage systems are implemented in the optimizing energy system model PERSEUS-NET-TS. This is a myopic material and energy flow model with an integrated nodal pricing approach. A mixed-integer optimization calculates the expansion and use of power plants in Germany until 2040 considering the DC restrictions of the transmission grid. Hence, the commissioning and allocation of storage systems in the German transmission grid is determined when the government target of 60 % renewable feed-in by 2040 is met. For this paper about every forth car in Germany is considered to drive electrically by 2040. When they are charged uncontrolled, directly after arrival the results are that by 2040 about 19 GW of storage systems are commissioned. Most are built closely to generation centers, but some are allocated close to bottlenecks in the transmission grid instead. When load shifting of the demand for electric mobility is allowed in terms of a controlled charging the required daily storage capacity could be reduced by more than half, so that only 8 GW are needed in 2040.
Suggested Citation
Sonja Babrowski & Patrick Jochem & Wolf Fichtner, 2014.
"Electricity Storage Systems and Their Allocation in the German Power System,"
Operations Research Proceedings, in: Dennis Huisman & Ilse Louwerse & Albert P.M. Wagelmans (ed.), Operations Research Proceedings 2013, edition 127, pages 7-13,
Springer.
Handle:
RePEc:spr:oprchp:978-3-319-07001-8_2
DOI: 10.1007/978-3-319-07001-8_2
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
search for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:oprchp:978-3-319-07001-8_2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.