IDEAS home Printed from https://ideas.repec.org/h/spr/oprchp/978-3-030-48439-2_65.html
   My bibliography  Save this book chapter

Capacitated Lot Sizing for Plastic Blanks in Automotive Manufacturing Integrating Real-World Requirements

In: Operations Research Proceedings 2019

Author

Listed:
  • Janis S. Neufeld

    (TU Dresden)

  • Felix J. Schmidt

    (BMW Group Plant Leipzig)

  • Tommy Schultz

    (BMW Group Plant Leipzig)

  • Udo Buscher

    (TU Dresden)

Abstract

Lot-sizing problems are of high relevance for many manufacturing companies, as they have a major impact on setup and inventory costs as well as various organizational implications. We discuss a practical capacitated lot-sizing problem, which arises in injection molding processes for plastic blanks at a large automotive manufacturer in Germany. 25 different product types have to be manufactured on 7 distinct machines, whereas each product type may be assigned to at least two of these machines. An additional challenge is that the following production processes use different shift models. Hence, the stages have to be decoupled by a buffer store, which has a limited capacity due to individual storage containers for each product type. For a successful application of the presented planning approach several real-world requirements have to be integrated, such as linked lot sizes, rejects as well as a given number of workers and a limited buffer capacity. A mixed integer programming model is proposed and tested for several instances from practice using CPLEX. It is proven of being able to find very good solutions within in few minutes and can serve as helpful decision support. In addition to a considerable reduction of costs, the previously mostly manual planning process can be simplified significantly.

Suggested Citation

  • Janis S. Neufeld & Felix J. Schmidt & Tommy Schultz & Udo Buscher, 2020. "Capacitated Lot Sizing for Plastic Blanks in Automotive Manufacturing Integrating Real-World Requirements," Operations Research Proceedings, in: Janis S. Neufeld & Udo Buscher & Rainer Lasch & Dominik Möst & Jörn Schönberger (ed.), Operations Research Proceedings 2019, pages 539-544, Springer.
  • Handle: RePEc:spr:oprchp:978-3-030-48439-2_65
    DOI: 10.1007/978-3-030-48439-2_65
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:oprchp:978-3-030-48439-2_65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.