IDEAS home Printed from https://ideas.repec.org/h/spr/oprchp/978-3-030-48439-2_53.html
   My bibliography  Save this book chapter

Robust Multistage Optimization with Decision-Dependent Uncertainty

In: Operations Research Proceedings 2019

Author

Listed:
  • Michael Hartisch

    (University of Siegen)

  • Ulf Lorenz

Abstract

Quantified integer (linear) programs (QIP) are integer linear programs with variables being either existentially or universally quantified. They can be interpreted as two-person zero-sum games between an existential and a universal player on the one side, or multistage optimization problems under uncertainty on the other side. Solutions are so called winning strategies for the existential player that specify how to react on moves—certain fixations of universally quantified variables—of the universal player to certainly win the game. In this setting the existential player must ensure the fulfillment of a system of linear constraints, while the universal variables can range within given intervals, trying to make the fulfillment impossible. Recently, this approach was extended by adding a linear constraint system the universal player must obey. Consequently, existential and universal variable assignments in early decision stages now can restrain possible universal variable assignments later on and vice versa resulting in a multistage optimization problem with decision-dependent uncertainty. We present an attenuated variant, which instead of an NP-complete decision problem allows a polynomial-time decision on the legality of a move. Its usability is motivated by several examples.

Suggested Citation

  • Michael Hartisch & Ulf Lorenz, 2020. "Robust Multistage Optimization with Decision-Dependent Uncertainty," Operations Research Proceedings, in: Janis S. Neufeld & Udo Buscher & Rainer Lasch & Dominik Möst & Jörn Schönberger (ed.), Operations Research Proceedings 2019, pages 439-445, Springer.
  • Handle: RePEc:spr:oprchp:978-3-030-48439-2_53
    DOI: 10.1007/978-3-030-48439-2_53
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:oprchp:978-3-030-48439-2_53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.