IDEAS home Printed from https://ideas.repec.org/h/spr/oprchp/978-3-030-48439-2_28.html
   My bibliography  Save this book chapter

Adaptation of a Branching Algorithm to Solve the Multi-Objective Hamiltonian Cycle Problem

In: Operations Research Proceedings 2019

Author

Listed:
  • Maialen Murua

    (TECNALIA)

  • Diego Galar

    (TECNALIA
    Luleå University of Technology)

  • Roberto Santana

    (University of the Basque Country (UPV/EHU))

Abstract

The Hamiltonian cycle problem (HCP) consists of finding a cycle of length N in an N-vertices graph. In this investigation, a graph G is considered with an associated set of matrices, in which each cell in the matrix corresponds to the weight of an arc. Thus, a multi-objective variant of the HCP is addressed and a Pareto set of solutions that minimizes the weights of the arcs for each objective is computed. To solve the HCP problem, the Branch-and-Fix algorithm is employed, a specific branching algorithm that uses the embedding of the problem in a particular stochastic process. To address the multi-objective HCP, the Branch-and-Fix algorithm is extended by computing different Hamiltonian cycles and fathoming the branches of the tree at earlier stages. The introduced anytime algorithm can produce a valid solution at any time of the execution, improving the quality of the Pareto Set as time increases.

Suggested Citation

  • Maialen Murua & Diego Galar & Roberto Santana, 2020. "Adaptation of a Branching Algorithm to Solve the Multi-Objective Hamiltonian Cycle Problem," Operations Research Proceedings, in: Janis S. Neufeld & Udo Buscher & Rainer Lasch & Dominik Möst & Jörn Schönberger (ed.), Operations Research Proceedings 2019, pages 231-237, Springer.
  • Handle: RePEc:spr:oprchp:978-3-030-48439-2_28
    DOI: 10.1007/978-3-030-48439-2_28
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:oprchp:978-3-030-48439-2_28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.