IDEAS home Printed from https://ideas.repec.org/h/spr/nrmchp/978-1-4939-6906-7_6.html
   My bibliography  Save this book chapter

Biofuel Life-Cycle Analysis

In: Handbook of Bioenergy Economics and Policy: Volume II

Author

Listed:
  • Jennifer B. Dunn

    (Argonne National Laboratory)

  • Jeongwoo Han

    (Argonne National Laboratory)

  • Joaquim Seabra

    (UNICAMP)

  • Michael Wang

    (Argonne National Laboratory)

Abstract

Life-cycle analysis (LCA) is an important tool used to assess the energy and environmental impacts of biofuels. Here, we review biofuel LCA methodology and its application in transportation fuel regulations in the United States, the European Union, and the United Kingdom. We examine the application of LCA to the production of ethanol from corn, sugarcane, corn stover, switchgrass, and miscanthus. A discussion of methodological choices such as co-product handling techniques in biofuel LCA is also provided. Further, we discuss the estimation of greenhouse gas (GHG) emissions of land use changes (LUC) potentially caused by biofuels, which can significantly influence LCA results. Finally, we provide results from LCAs of ethanol from various sources. Regardless of feedstock, bioethanol offers reduced GHG emissions over fossil-derived gasoline, even when LUC GHG emissions are included. This is mainly caused by displacement of fossil carbon in gasoline with biogenic carbon in ethanol. Of the ethanol pathways examined, corn ethanol has the greatest life-cycle GHG emissions and offers 30% reduction in life-cycle GHG emissions as compared to gasoline when LUC GHG emissions are included. Miscanthus ethanol demonstrates the highest life-cycle GHG emissions reductions compared to gasoline, 109%, when LUC GHG emissions are included.

Suggested Citation

  • Jennifer B. Dunn & Jeongwoo Han & Joaquim Seabra & Michael Wang, 2017. "Biofuel Life-Cycle Analysis," Natural Resource Management and Policy, in: Madhu Khanna & David Zilberman (ed.), Handbook of Bioenergy Economics and Policy: Volume II, pages 121-161, Springer.
  • Handle: RePEc:spr:nrmchp:978-1-4939-6906-7_6
    DOI: 10.1007/978-1-4939-6906-7_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kain Glensor & María Rosa Muñoz B., 2019. "Life-Cycle Assessment of Brazilian Transport Biofuel and Electrification Pathways," Sustainability, MDPI, vol. 11(22), pages 1-31, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nrmchp:978-1-4939-6906-7_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.